384 research outputs found

    Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models

    Get PDF
    Generalized Linear Models are a widely used method to obtain parametric es- timates for the mean function. They have been further extended to allow the re- lationship between the mean function and the covariates to be more flexible via Generalized Additive Models. However the fixed variance structure can in many cases be too restrictive. The Extended Quasi-Likelihood (EQL) framework allows for estimation of both the mean and the dispersion/variance as functions of covari- ates. As for other maximum likelihood methods though, EQL estimates are not resistant to outliers: we need methods to obtain robust estimates for both the mean and the dispersion function. In this paper we obtain functional estimates for the mean and the dispersion that are both robust and smooth. The performance of the proposed method is illustrated via a simulation study and some real data examples.dispersion;generalized additive modelling;mean regression function;quasilikelihood;M-estimation;P-splines;robust estimation

    Robust Forecasting of Non-Stationary Time Series

    Get PDF
    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estimator. An additional advantage of the MM-estimator is that it provides a robust estimate of the local variability of the time series.Heteroscedasticity;Non-parametric regression;Prediction;Outliers;Robustness

    Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models

    Get PDF

    Robust Forecasting of Non-Stationary Time Series

    Get PDF
    This paper proposes a robust forecasting method for non-stationary time series. The time series is modelled using non-parametric heteroscedastic regression, and fitted by a localized MM-estimator, combining high robustness and large efficiency. The proposed method is shown to produce reliable forecasts in the presence of outliers, non-linearity, and heteroscedasticity. In the absence of outliers, the forecasts are only slightly less precise than those based on a localized Least Squares estimator. An additional advantage of the MM-estimator is that it provides a robust estimate of the local variability of the time series.

    Covariance function of a bivariate distribution function estimator for left truncated and right censored data

    Get PDF
    In left truncation and right censoring models one observes i.i.d. samples from the triplet (T, Z, δ) only if T ≤ Z, where Z = min(Y, C) and δ is one if Z = Y and zero otherwise. Here, Y is the variable of interest, T is the truncating variable and C is the censoring variable. Recently, Gürler and Gijbels (1996) proposed a nonparametric estimator for the bivariate distribution function when one of the components is subject to left truncation and right censoring. An asymptotic representation of this estimator as a mean of i.i.d. random variables with a negligible remainder term has been developed. This result establishes the convergence to a two time parameter Gaussian process. The covariance structure of the limiting process is quite complicated however, and is derived in this paper. We also consider the special case of censoring only. In this case the general expression for the variance function reduces to a simpler formula

    Functional kernel estimators of conditional extreme quantiles

    Get PDF
    We address the estimation of "extreme" conditional quantiles i.e. when their order converges to one as the sample size increases. Conditions on the rate of convergence of their order to one are provided to obtain asymptotically Gaussian distributed kernel estimators. A Weissman-type estimator and kernel estimators of the conditional tail-index are derived, permitting to estimate extreme conditional quantiles of arbitrary order.Comment: arXiv admin note: text overlap with arXiv:1107.226

    The Primary Energy Dependence of Backscattered Electron Images Up to 100 keV

    Get PDF
    The backscattered electron coefficient is known to be primarily dependent on the atomic number of the sample. If the atomic number increases, the backscattered electron coefficient increases, which results in a higher intensity in the backscattered electron image. The dependence of the primary electron energy is somewhat more complicated. Using photographic material (with composition AgBr-AgI), it is seen that the contrast in the backscattered electron image increases with the primary electron energy. Using three independent methods, based on image analysis techniques, it is shown that the difference between the backscattered electron coefficient of AgBr and AgI increases with the primary electron energy in the range from 40 to 100 keV

    A class of nonparametric bivariate survival function estimators for randomly censored and truncated data

    Get PDF
    This paper proposes a class of nonparametric estimators for the bivariate survival function estimation under both random truncation and random censoring. In practice, the pair of random variables under consideration may have certain parametric relationship. The proposed class of nonparametric estimators uses such parametric information via a data transformation approach and thus provides more accurate estimates than existing methods without using such information. The large sample properties of the new class of estimators and a general guidance of how to find a good data transformation are given. The proposed method is also justified via a simulation study and an application on an economic data set

    Exploring wind direction and SO2 concentration by circular-linear density estimation

    Full text link
    The study of environmental problems usually requires the description of variables with different nature and the assessment of relations between them. In this work, an algorithm for flexible estimation of the joint density for a circular-linear variable is proposed. The method is applied for exploring the relation between wind direction and SO2 concentration in a monitoring station close to a power plant located in Galicia (NW-Spain), in order to compare the effectiveness of precautionary measures for pollutants reduction in two different years.Comment: 17 pages, 7 figures, 2 table
    corecore